例如:"lncRNA", "apoptosis", "WRKY"

Comparison of tear protein levels in breast cancer patients and healthy controls using a de novo proteomic approach.

Oncol. Rep.2012 Aug;28(2):429-38. doi:10.3892/or.2012.1849. Epub 2012 Jun 01
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Noninvasive biomarkers are urgently needed for early detection of breast cancer since the risk of recurrence, morbidity and mortality are closely related to disease stage at the time of primary surgery. In the past decade, many proteomics-based approaches were developed that utilize the protein profiling of human body fluids or identification of putative biomarkers to obtain more knowledge on the effects of cancer emergence and progression. Herein, we report on an analysis of proteins in the tear fluid from breast carcinoma patients and healthy women using a de novo proteomic approach and 25 mixed samples from each group. This study included 25 patients with primary invasive breast carcinoma and 25 age-matched healthy controls. We performed a MALDI-TOF-TOF-driven semi-quantitative comparison of tear protein levels in cancer (CA) and control (CTRL) using a de novo approach in pooled samples. Over 150 proteins in the tear fluid of CTRL and CA were identified. Using an in-house-developed algorithm we found more than 20 proteins distinctly upregulated or downregulated in the CTRL and CA groups. We identified several proteins that had modified expression in breast cancer patients. These proteins are involved in host immune system pathways (e.g., C1Q1 or S100A8) and different metabolic cascades (ALDH3A or TPI). Further validation of the results in an independent population combined with individual protein profiling of participants is needed to confirm the specificity of our findings and may lead to a better understanding of the pathological mechanism of breast cancer.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读