例如:"lncRNA", "apoptosis", "WRKY"

A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder.

Schizophr. Res.2010 Dec;124(1-3):192-9
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Schizophrenia and bipolar disorder both have strong inherited components. Recent studies have indicated that schizophrenia and bipolar disorder may share more than half of their genetic determinants. In this study, we performed a meta-analysis (combined analysis) for genome-wide association data of the Affymetrix Genome-Wide Human SNP array 6.0 to detect genetic variants influencing both schizophrenia and bipolar disorder using European-American samples (653 bipolar cases and 1034 controls, 1172 schizophrenia cases and 1379 controls). The best associated SNP rs11789399 was located at 9q33.1 (p=2.38 × 10(-6), 5.74 × 10(-4), and 5.56 × 10(-9), for schizophrenia, bipolar disorder and meta-analysis of schizophrenia and bipolar disorder, respectively), where one flanking gene, ASTN2 (220kb away) has been associated with attention deficit/hyperactivity disorder and schizophrenia. The next best SNP was rs12201676 located at 6q15 (p=2.67 × 10(-4), 2.12 × 10(-5), 3.88 × 10(-8) for schizophrenia, bipolar disorder and meta-analysis, respectively), near two flanking genes, GABRR1 and GABRR2 (15 and 17kb away, respectively). The third interesting SNP rs802568 was at 7q35 within CNTNAP2 (p=8.92 × 10(-4), 1.38 × 10(-5), and 1.62 × 10(-7) for schizophrenia, bipolar disorder and meta-analysis, respectively). Through meta-analysis, we found two additional associated genes NALCN (the top SNP is rs2044117, p=4.57 × 10(-7)) and NAP5 (the top SNP is rs10496702, p=7.15 × 10(-7)). Haplotype analyses of above five loci further supported the associations with schizophrenia and bipolar disorder. These results provide evidence of common genetic variants influencing schizophrenia and bipolar disorder. These findings will serve as a resource for replication in other populations to elucidate the potential role of these genetic variants in schizophrenia and bipolar disorder.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读