例如:"lncRNA", "apoptosis", "WRKY"

Presence of a "CAGA box" in the APP gene unique to amyloid plaque-forming species and absent in all APLP-1/2 genes: implications in Alzheimer's disease.

FASEB J.2004 Aug;18(11):1288-90. Epub 2004 Jun 18
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Potentially toxic amyloid beta-peptide (Abeta) in Alzheimer's disease (AD) is generated from a family of Abeta-containing precursor proteins (APP), which is regulated via the 5'-untranslated region (5'-UTR) of its mRNA. We analyzed 5'-UTRs of the APP superfamily, including amyloid plaque-forming and non-amyloid plaque-forming species, and of prions (27 different DNA sequences). A "CAGA" sequence proximal to the "ATG" start codon was present in a location unique to APP genes of amyloid plaque-forming species and absent in all other genes surveyed. This CAGA box is immediately upstream of an interleukin-1-responsive element (acute box). In addition, the proximal CAGA box is predicted to appear on a stem-loop structure in both human and guinea pig APP mRNA. This stem-loop is part of a predicted bulge-loop that encompasses a known iron regulatory element (IRE). Electrophoretic mobility shift with segments of the APP 5'-UTR showed that a region with the proximal CAGA sequence binds nuclear proteins, and this UTR fragment is active in a reporter gene functional assay. Thus, the 5'-UTR in the human APP but not those of APP-like proteins contains a specific region that may participate in APP regulation and may determine a more general model for amyloid generation as seen in AD. The 5'-UTR of human APP contains several interesting control elements, such as an acute box element, a CAGA box, an IRE, and a transforming growth factor-beta-responsive element, that could control APP expression and provide suitable and specific drug targets for AD.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读