例如:"lncRNA", "apoptosis", "WRKY"

Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase.

Cell Metab.2005 Jul;2(1):9-19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The AMP-activated protein kinase (AMPK) is a critical regulator of energy balance at both the cellular and whole-body levels. Two upstream kinases have been reported to activate AMPK in cell-free assays, i.e., the tumor suppressor LKB1 and calmodulin-dependent protein kinase kinase. However, evidence that this is physiologically relevant currently only exists for LKB1. We now report that there is a significant basal activity and phosphorylation of AMPK in LKB1-deficient cells that can be stimulated by Ca2+ ionophores, and studies using the CaMKK inhibitor STO-609 and isoform-specific siRNAs show that CaMKKbeta is required for this effect. CaMKKbeta also activates AMPK much more rapidly than CaMKKalpha in cell-free assays. K(+)-induced depolarization in rat cerebrocortical slices, which increases intracellular Ca2+ without disturbing cellular adenine nucleotide levels, activates AMPK, and this is blocked by STO-609. Our results suggest a potential Ca(2+)-dependent neuroprotective pathway involving phosphorylation and activation of AMPK by CaMKKbeta.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读