例如:"lncRNA", "apoptosis", "WRKY"

mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression.

Mol. Cell. 2003 Aug;12(2):475-87
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Methylation of histone tails plays an important role in chromatin structure and function. Previously, we reported that ESET/SETDB1 is a histone methyltransferase (HMTase). Here, we show that SETDB1 tightly associates with the human homolog of mAM, a murine ATFa-associated factor. Although recombinant ESET can methylate lysine 9 of histone H3 (H3-K9), its activity is severely compromised when compared to that of the ESET/mAM complex. mAM stimulates ESET enzymatic activity by increasing the Vmax and decreasing the Km. Importantly, mAM facilitates the ESET-dependent conversion of dimethyl H3-K9 to the trimethyl state both in vitro and in vivo. Chromatin-based transcription and ChIP analyses demonstrate that mAM enhances ESET-mediated transcriptional repression in a SAM-dependent manner, and this repression correlates with H3-K9 trimethylation at the promoter. Thus, our studies establish that promoter H3-K9 trimethylation is the cause of transcriptional repression and that mAM/hAM facilitates conversion of H3-K9 dimethyl to trimethyl by ESET/SETDB1.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读