例如:"lncRNA", "apoptosis", "WRKY"

Protein array analysis of oligomerization-induced changes in alpha-synuclein protein-protein interactions points to an interference with Cdc42 effector proteins.

Neuroscience. 2008 Jul 17;154(4):1450-7. Epub 2008 Feb 29
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Aggregation of alpha-synuclein may contribute to neuropathology in Parkinson's disease patients and in transgenic animal models. Natively unfolded alpha-synuclein binds to various proteins and conformational changes due to alpha-synuclein misfolding may alter physiological interactions. In the present study, we used protein arrays spotted with 5000 recombinant human proteins for a large scale interaction analysis of monomeric versus oligomeric alpha-synuclein. Monomeric alpha-synuclein bound to arrayed cAMP regulated phosphoprotein 19 and binding appears to be disrupted by alpha-synuclein oligomerization. Incubation with recombinant alpha-synuclein oligomers lead to the identification of several GTPase activating proteins and Cdc42 effector proteins as binding partners. Protein database searches revealed a Cdc42/Rac interactive binding domain in some interactors. To demonstrate in vivo relevance, we analyzed brainstem protein extracts from alpha-synuclein(A30P) transgenic mice. Pull-down assays using beads conjugated with a Cdc42/Rac interactive binding domain lead to an enrichment of endogenous alpha-synuclein oligomers. Cdc42 effector proteins were also co-immunoprecipitated with alpha-synuclein from brainstem lysates and were colocalized with alpha-synuclein aggregates in brain sections by double immunostaining. By two-dimensional gel electrophoretic analysis of synaptosomal fractions from transgenic mouse brains we detected additional isoforms of septin 6, a downstream target of Cdc42 effector proteins. Small GTPases have recently been identified in a genetic modifier screen to suppress alpha-synuclein toxicity in yeast. Our data indicate that components of small GTPase signal transduction pathways may be directly targeted by alpha-synuclein oligomers which potentially leads to signaling deficits and neurodegeneration.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读