例如:"lncRNA", "apoptosis", "WRKY"

BAG5 inhibits parkin and enhances dopaminergic neuron degeneration.

Neuron. 2004 Dec 16;44(6):931-45
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Loss-of-function mutations in the parkin gene, which encodes an E3 ubiquitin ligase, are the major cause of early-onset Parkinson's disease (PD). Decreases in parkin activity may also contribute to neurodegeneration in sporadic forms of PD. Here, we show that bcl-2-associated athanogene 5 (BAG5), a BAG family member, directly interacts with parkin and the chaperone Hsp70. Within this complex, BAG5 inhibits both parkin E3 ubiquitin ligase activity and Hsp70-mediated refolding of misfolded proteins. BAG5 enhances parkin sequestration within protein aggregates and mitigates parkin-dependent preservation of proteasome function. Finally, BAG5 enhances dopamine neuron death in an in vivo model of PD, whereas a mutant that inhibits BAG5 activity attenuates dopaminergic neurodegeneration. This contrasts with the antideath functions ascribed to BAG family members and suggests a potential role for BAG5 in promoting neurodegeneration in sporadic PD through its functional interactions with parkin and Hsp70.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读