例如:"lncRNA", "apoptosis", "WRKY"

X-ray repair cross-complementing protein 1 (XRCC1) deficiency enhances class switch recombination and is permissive for alternative end joining.

Proc. Natl. Acad. Sci. U.S.A.2012 Mar 20;109(12):4604-8. Epub 2012 Mar 05
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


DNA double-strand breaks (DSBs) are essential intermediates in Ig gene rearrangements: V(D)J and class switch recombination (CSR). In contrast to V(D)J recombination, which is almost exclusively dependent on nonhomologous end joining (NHEJ), CSR can occur in NHEJ-deficient cells via a poorly understand backup pathway (or pathways) often termed alternative end joining (A-EJ). Recently, several components of the single-strand DNA break (SSB) repair machinery, including XRCC1, have been implicated in A-EJ. To determine its role in A-EJ and CSR, Xrcc1 was deleted by targeted mutation in the CSR proficient mouse B-cell line, CH12F3. Here we demonstrate that XRCC1 deficiency slightly increases the efficiency of CSR. More importantly, Lig4 and XRCC1 double-deficient cells switch as efficiently as Lig4-deficient cells, clearly indicating that XRCC1 is dispensable for A-EJ in CH12F3 cells during CSR.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读