[No authors listed]
Functional characterization of proteins belonging to the MHC I superfamily involves knowing their cognate ligands, which can be peptides, lipids or none. However, the experimental identification of these ligands is not an easy task and generally requires some a priori knowledge of their chemical nature (ligand-type specificity). Here, we trained k-nearest neighbor and support vector machine classifiers that predict the ligand-type specificity MHC I proteins with great accuracy. Moreover, we applied these classifiers to human and mouse MHC I proteins of uncharacterized ligands, obtaining some results that can be instrumental to unravel the function of these proteins.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |