例如:"lncRNA", "apoptosis", "WRKY"

CRT-1/calreticulin and the E3 ligase EEL-1/HUWE1 control hemidesmosome maturation in C. elegans development.

Curr. Biol.2010 Feb 23;20(4):322-7. Epub 2010 Feb 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Hemidesmosomes connect the extracellular matrix (ECM) to intermediate filaments through ECM receptors and plakins (plectin and BPAG1e). They affect tissue integrity, wound healing, and carcinoma invasion. Although biochemical and time-lapse studies indicate that alpha6beta4-integrin (ECM receptor) and plectin play a central role in modulating hemidesmosome disassembly, the mechanisms controlling hemidesmosome biogenesis in vivo remain poorly understood. The nematode C. elegans provides a powerful genetic model to address this issue. We performed a genome-wide RNA interference screen in C. elegans, searching for genes that decrease the viability of a weak VAB-10A/plakin mutant. We identified 14 genes that have human homologs with predicted roles in different cellular processes. We further characterized two genes encoding the chaperone CRT-1/calreticulin and the HECT domain E3 ubiquitin ligase EEL-1/HUWE1. CRT-1 controls by as little as 2-fold the abundance of UNC-52/perlecan, an essential hemidesmosome ECM ligand. Likewise, EEL-1 fine tunes by 2-fold the abundance of myotactin, the putative hemidesmosome ECM receptor. CRT-1 and EEL-1 activities, and by extension other genes identified in our screen, are essential during embryonic development to enable hemidesmosomes exposed to mechanical tension to mature into a tension-resistant form. Our findings should help understand how hemidesmosome dynamics are regulated in vertebrate systems.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读