例如:"lncRNA", "apoptosis", "WRKY"

Neural stem cell self-renewal requires the Mrj co-chaperone.

Dev. Dyn.2009 Oct;238(10):2564-74. doi:10.1002/dvdy.22088
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The Mrj co-chaperone is expressed throughout the mouse conceptus, yet its requirement for placental development has prohibited a full understanding of its embryonic function. Here, we show that Mrj(-/-) embryos exhibit neural tube defects independent of the placenta phenotype, including exencephaly and thin-walled neural tubes. Molecular analyses revealed fewer proliferating cells and a down-regulation of early neural progenitor (Pax6, Olig2, Hes5) and neuronal (Nscl2, SCG10) cell markers in Mrj(-/-) neuroepithelial cells. Furthermore, Mrj(-/-) neurospheres are significantly smaller and form fewer secondary neurospheres indicating that Mrj is necessary for self-renewal of neural stem cells. However, the molecular function of Mrj in this context remains elusive because Mrj does not colocalize with Bmi-1, a self-renewal protein. Furthermore, unlike in Mrj(-/-) placentas, intermediate filament-containing aggregates do not accumulate in Mrj(-/-) neuroepithelium, ruling out nestin as a substrate for Mrj. Regardless, Mrj plays an important role in neural stem cell self-renewal.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读