例如:"lncRNA", "apoptosis", "WRKY"

CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore.

Cell. 2008 Dec 12;135(6):1039-52
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Kinetochore specification and assembly requires the targeted deposition of specialized nucleosomes containing the histone H3 variant CENP-A at centromeres. However, CENP-A is not sufficient to drive full-kinetochore assembly, and it is not clear how centromeric chromatin is established. Here, we identify CENP-W as a component of the DNA-proximal constitutive centromere-associated network (CCAN) of proteins. We demonstrate that CENP-W forms a DNA-binding complex together with the CCAN component CENP-T. This complex directly associates with nucleosomal DNA and with canonical histone H3, but not with CENP-A, in centromeric regions. CENP-T/CENP-W functions upstream of other CCAN components with the exception of CENP-C, an additional putative DNA-binding protein. Our analysis indicates that CENP-T/CENP-W and CENP-C provide distinct pathways to connect the centromere with outer kinetochore assembly. In total, our results suggest that the CENP-T/CENP-W complex is directly involved in establishment of centromere chromatin structure coordinately with CENP-A.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读