例如:"lncRNA", "apoptosis", "WRKY"

The roles of the FGF signal in zebrafish embryos analyzed using constitutive activation and dominant-negative suppression of different FGF receptors.

Mech. Dev.2009 Jan-Feb ;126(1-2):1-17. Epub 2008 Oct 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The roles of the FGF family growth factors and their receptors (FGFRs) in zebrafish embryos were examined using variously modified versions of the four FGFR genes (fgfr1-4). Constitutively active forms of all of the examined FGFRs (ca-FGFRs) caused dorsalization, brain caudalization, and secondary axis formation, indicating that the main FGF signal transduction downstream of the receptor is highly similar among FGFRs. All of the membrane-bound type of dominant-negative FGFRs (mdn-FGFRs) derived from the four fgfr genes, which interfere with endogenous FGFRs, produced posterior truncation, as previously reported in both Xenopus and zebrafish. mdn-FGFR3c had the strongest effects on embryos, progressively disrupting the posterior structure as the dose increased. At the highest dose, only the forebrain was formed. At lower doses, mdn-FGFR3c mainly suppressed the paraxial mesoderm. The co-injection of mRNA for different mdn-FGFRs and FGFs resulted in diverse suppression spectra of the respective FGFRs against FGFs. Only mdn-FGFR3c severely suppressed all of the FGFs examined. We also examined the effects of the secretory type of dominant-negative FGFRs (sdn-FGFRs), which are released from cells and trap FGF ligands. Only sdn-FGFR3c resulted in the characteristic effect of selectively disrupting the isthmic development, as well as the tailbud. The co-injection of the mRNA for sdn-FGFRs and FGFs suggested that sdn-FGFR3c inhibits FGFs of the FGF8 subfamily, which is consistent with its specific effects on development. We discuss the implications of our findings obtained in the present study.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读