例如:"lncRNA", "apoptosis", "WRKY"

Swi3p controls SWI/SNF assembly and ATP-dependent H2A-H2B displacement.

Nat. Struct. Mol. Biol.2007 Jun;14(6):540-7. Epub 2007 May 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Yeast SWI/SNF is a multisubunit, 1.14-MDa ATP-dependent chromatin-remodeling enzyme required for transcription of a subset of inducible genes. Biochemical studies have demonstrated that SWI/SNF uses the energy from ATP hydrolysis to generate superhelical torsion, mobilize mononucleosomes, enhance the accessibility of nucleosomal DNA and remove H2A-H2B dimers from mononucleosomes. Here we describe the ATP-dependent activities of a SWI/SNF sub complex that is composed of only three subunits, Swi2p, Arp7p and Arp9p. Whereas this sub complex is fully functional in most remodeling assays, Swi2p-Arp7p-Arp9p is defective for ATP-dependent removal of H2A-H2B dimers. We identify the acidic N terminus of the Swi3p subunit as a novel H2A-H2B-binding domain required for ATP-dependent dimer loss. Our data indicate that H2A-H2B dimer loss is not an obligatory consequence of ATP-dependent DNA translocation, and furthermore they suggest that SWI/SNF is composed of at least four interdependent modules.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读