例如:"lncRNA", "apoptosis", "WRKY"

Tus-mediated arrest of DNA replication in Escherichia coli is modulated by DNA supercoiling.

Mol. Microbiol.2005 Nov;58(3):758-73
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In the absence of RecA, expression of the Tus protein of Escherichia coli is lethal when ectopic Ter sites are inserted into the chromosome in an orientation that blocks completion of chromosome replication. Using this observation as a basis for genetic selection, an extragenic suppressor of Tus-mediated arrest of DNA replication was isolated with diminished ability of Tus to halt DNA replication. Resistance to tus expression mapped to a mutation in the stop codon of the topA gene (topA869), generating an elongated topoisomerase I protein with a marked reduction in activity. Other alleles of topA with mutations in the carboxyl-terminal domain of topoisomerase I, topA10 and topA66, also rendered recA strains with blocking Ter sites insensitive to tus expression. Thus, increased negative supercoiling in the DNA of these mutants reduced the ability of Tus-Ter complexes to arrest DNA replication. The increase in superhelical density did not diminish replication arrest by disrupting Tus-Ter interactions, as Tus binding to Ter sites was essentially unaffected by the topA mutations. The topA869 mutation also relieved the requirement for recombination functions other than recA to restart replication, such as recC, ruvA and ruvC, indicating that the primary effect of the increased negative supercoiling was to interfere with Tus blockage of DNA replication. Introduction of gyrB mutations in combination with the topA869 mutation restored supercoiling density to normal values and also restored replication arrest at Ter sites, suggesting that supercoiling alone modulated Tus activity. We propose that increased negative supercoiling enhances DnaB unwinding activity, thereby reducing the duration of the Tus-DnaB interaction and leading to decreased Tus activity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读