例如:"lncRNA", "apoptosis", "WRKY"

Expression and phenotype analysis of the nephrocystin-1 and nephrocystin-4 homologs in Caenorhabditis elegans.

J. Am. Soc. Nephrol.2005 Mar;16(3):676-87. Epub 2005 Jan 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Nephronophthisis (NPHP), an autosomal-recessive cystic kidney disease, is the most frequent genetic cause of end-stage renal failure in children. NPHP types 1 and 4 are caused by mutations in NPHP1 and NPHP4, encoding the proteins nephrocystin-1 and nephrocystin-4, respectively. Nephrocystin-1 and nephrocystin-4 are expressed in primary cilia of renal epithelial cells. NPHP1 and NPHP4 are highly conserved in Caenorhabditis elegans. However, this species does not have a kidney but an excretory system that consists of an excretory cell, an excretory gland cell, a duct cell, and a pore cell. Therefore, cell type-specific expression pattern and function of the nephrocystin homologs in C. elegans were of interest. Expression of green fluorescence protein fusion constructs that contain the C. elegans promoter regions for nph-1 and nph-4 was not found in the excretory system but in ciliated sensory neurons of the head (amphid neurons) and the tail in hermaphrodites (phasmid neurons) and males (sensory ray neurons). As the knockout phenotype for the PKD homologs lov-1 and pkd-2 shows impaired male mating behavior, knockdown animals were analyzed for this phenotype. A similar phenotype was found in the nph-1 and nph-4 duanyu1615 knockdown animals compared with the lov-1 and pkd-2 knockout phenotype. Thus, it is suggested that renal cyst-causing genes may be part of a shared functional module, highly conserved in evolution. The NPHP homologs may be necessary for initial assembly of the cilium, whereas the polycystic kidney disease homologs may function as sensory transducers.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读