[No authors listed]
McrBC, a GTP-requiring, modification-dependent endonuclease of Escherichia coli K-12, specifically recognizes DNA sites of the form 5' R(m)C 3'. DNA cleavage normally requires translocation-mediated coordination between two such recognition elements at distinct sites. We have investigated assembly of the cleavage-competent complex with gel-shift and DNase I footprint analysis. In the gel-shift system, McrB(L) binding resulted in a fast-migrating specific shifted band, in a manner requiring both GTP and Mg(2+). The binding was specific for methylated DNA and responded to local sequence changes in the same way that cleavage does. Single-stranded DNA competed for McrB(L)-binding in a modification and sequence-specific fashion. A supershifted species was formed in the presence of McrC and GTPgammaS. DNase I footprint analysis showed modest cooperativity in binding to two sites, and a two-site substrate displayed protection in non-specific spacer DNA in addition to the recognition elements. The addition of McrC did not affect the footprint obtained. We propose that McrC effects a conformational change in the complex rather than a reorganization of the DNA:protein interface.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |