例如:"lncRNA", "apoptosis", "WRKY"

Synthesis and processing of mammalian protamines and transition proteins.

Mol. Reprod. Dev.1994 Mar;37(3):255-63. doi:10.1002/mrd.1080370303
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Mouse and rat seminiferous tubule fragment cultures were used to examine synthesis and processing of mammalian protamines and transition proteins. The tubule fragments were incubated with [3H]-arginine, [3H]-histidine, [35S]-cysteine, or [32P]-PO4, and radiolabeled proteins were analyzed by acid/urea polyacrylamide gel electrophoresis and fluorography or autoradiography. Newly synthesized protamines were recovered from sonication-resistant nuclei (SRN) and could not be detected in cytoplasmic fractions, indicating that protamines are deposited into nuclei immediately after synthesis. Newly synthesized mouse protamine 1 (mP1) and the precursor to mouse protamine 2 (pre-mP2) migrated more slowly during electrophoresis than their predominant testicular forms, identified by staining with Coomassie blue R-250. Within 1 hour of synthesis, the electrophoretic mobilities of mP1 and pre-mP2 increased to match those of their predominant forms. These changes are consistent with initial charge-neutralizing modifications of the newly synthesized protamines, followed by removal of at least some of the modifying ligands, to unmask protamine basicity. Steady-state phosphorylation rates were high for rat protamine 1 (rP1) and were independent of phosphate content; both rP1 molecules of low and high phosphate content were rapidly phosphorylated. Pre-mP2-3, a major processing intermediate derived by proteolysis of pre-mP2, was also rapidly phosphorylated. Like the protamines, transition protein 2 (TP2) was rapidly phosphorylated and increased in electrophoretic mobility soon after synthesis. In contrast, transition protein 1 (TP1) was not phosphorylated and did not exhibit multiple electrophoretic forms.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读