例如:"lncRNA", "apoptosis", "WRKY"

SLK/LOSK kinase regulates cell motility independently of microtubule organization and Golgi polarization.

Cytoskeleton (Hoboken). 2016 Feb;73(2):83-92. doi:10.1002/cm.21276. Epub 2016 Feb 22
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Cell motility is an essential complex process that requires actin and microtubule cytoskeleton reorganization and polarization. Such extensive rearrangement is closely related to cell polarization as a whole. The serine/threonine kinase SLK/LOSK is a potential regulator of cell motility, as it phosphorylates a series of cytoskeleton-bound proteins that collectively participate in the remodeling of migratory cell architecture. In this work, we report that SLK/LOSK is an indispensable regulator of cell locomotion that primarily acts through the small GTPase RhoA and the dynactin subunit p150(Glued) . Both RhoA and dynactin affect cytoskeleton organization, polarization, and general cell locomotory activity to various extents. However, it seems that these events are independent of each other. Thus, SLK/LOSK kinase effectively functions as a switch that links all of the processes underlying cell motility to provide robust directional movement. © 2016 Wiley Periodicals, Inc.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读