例如:"lncRNA", "apoptosis", "WRKY"

Circadian Oscillation of Sulfiredoxin in the Mitochondria.

Mol. Cell. 2015 Aug 20;59(4):651-63. Epub 2015 Jul 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Hydrogen peroxide (H2O2) released from mitochondria regulates various cell signaling pathways. Given that H2O2-eliminating enzymes such as peroxiredoxin III (PrxIII) are abundant in mitochondria, however, it has remained unknown how such release can occur. Active PrxIII-SH undergoes reversible inactivation via hyperoxidation to PrxIII-SO2, which is then reduced by sulfiredoxin. We now show that the amounts of PrxIII-SO2 and sulfiredoxin undergo antiphasic circadian oscillation in the mitochondria of specific tissues of mice maintained under normal conditions. Cytosolic sulfiredoxin was found to be imported into the mitochondria via a mechanism that requires formation of a disulfide-linked complex with heat shock protein 90, which is promoted by H2O2 released from mitochondria. The imported sulfiredoxin is degraded by Lon in a manner dependent on PrxIII hyperoxidation state. The coordinated import and degradation of sulfiredoxin provide the basis for sulfiredoxin oscillation and consequent PrxIII-SO2 oscillation in mitochondria and likely result in an oscillatory H2O2 release.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读