[No authors listed]
Multiple pathologic conditions, including hemorrhage, tumor angiogenesis, and ischemia-reperfusion events, will result in hypoxia and subsequent reperfusion. Previous studies have analyzed the lipid changes within whole tissues and indicated that ischemia-reperfusion altered tissue and cellular phospholipids. Using an in vitro cell culture model of hypoxia and reoxygenation, we examined the endothelial lipid changes. We hypothesized that phospholipid scramblase 1, a protein that regulates bilayer asymmetry, is involved in altering the phospholipids of endothelial cells during hypoxia, a component of ischemia, leading to β2-glycoprotein I and IgM binding and subsequent lipid-mediated, inflammatory responses. We have completed the first comprehensive study of steady-state phospholipid scramblase 1 mRNA levels, protein expression, and activity under conditions of hypoxia and reoxygenation. Phospholipid scramblase 1 regulates phosphatidylserine exposure in response to oxygen stress, leading to β2-glycoprotein I and IgM binding and lipid-mediated, inflammatory responses.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |