例如:"lncRNA", "apoptosis", "WRKY"

Relative Contributions of CYP1A2 and CYP2E1 to the Bioactivation and Clearance of 4-Aminobiphenyl in Adult Mice.

Drug Metab. Dispos.2015 Jul;43(7):916-21. Epub 2015 Apr 28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


4-Aminobiphenyl (ABP), a prototypical aromatic amine carcinogen in rodents and humans, requires bioactivation to manifest its toxic effects. A traditional model of ABP bioactivation, based on in vitro enzyme kinetic evidence, had postulated initial N-hydroxylation by the cytochrome P450 isoform CYP1A2. This is followed by phase 2 O-conjugation and hydrolysis to form a reactive nitrenium ion that covalently binds to DNA and produces tumor-initiating mutations. However, Cyp1a2(-/-) mice still possess significant liver ABP N-hydroxylation activity, DNA damage, and incidence of ABP-induced liver tumors, and in vivo induction of CYP1A2 paradoxically reduces levels of ABP-induced DNA damage. Competing ABP detoxification pathways can include N-acetylation by arylamine N-acetyltransferase 1 (NAT1) and/or NAT2; however, wild-type and Nat1/2(-/-) mice have similar in vivo ABP clearance rates. Together, these studies suggest the existence of novel ABP bioactivating and clearance/detoxification enzymes. In the present study, we detected similar reductions in Vmax for ABP N-hydroxylation by liver microsomes from Cyp1a2(-/-) and Cyp2e1(-/-) mice when compared with wild-type mice. In addition, recombinant mouse CYP1A2 and CYP2E1 were both able to N-hydroxylate ABP in mouse hepatoma cells. However, the in vivo clearance of ABP was significantly reduced in Cyp1a2(-/-) but not in Cyp2e1(-/-) mice. Our results support a significant role for CYP2E1 as a novel ABP N-oxidizing enzyme in adult mice, and suggest a more important contribution of CYP1A2 to the in vivo plasma clearance and thus detoxification of ABP.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读