例如:"lncRNA", "apoptosis", "WRKY"

CUL3-KBTBD6/KBTBD7 ubiquitin ligase cooperates with GABARAP proteins to spatially restrict TIAM1-RAC1 signaling.

Mol. Cell. 2015 Mar 19;57(6):995-1010. Epub 2015 Feb 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The small Rho GTPase RAC1 is an essential regulator of cellular signaling that controls actin rearrangements and cell motility. Here, we identify a novel CUL3 RING ubiquitin ligase complex, containing the substrate adaptors KBTBD6 and KBTBD7, that mediates ubiquitylation and proteasomal degradation of TIAM1, a RAC1-specific GEF. Increasing the abundance of TIAM1 by depletion of KBTBD6 and/or KBTBD7 leads to elevated RAC1 activity, changes in actin morphology, loss of focal adhesions, reduced proliferation, and enhanced invasion. KBTBD6 and KBTBD7 employ ATG8 family-interacting motifs to bind preferentially to GABARAP proteins. Surprisingly, ubiquitylation and degradation of TIAM1 by CUL3(KBTBD6/KBTBD7) depends on its binding to GABARAP proteins. Our study reveals that recruitment of CUL3(KBTBD6/KBTBD7) to GABARAP-containing vesicles regulates the abundance of membrane-associated TIAM1 and subsequently spatially restricted RAC1 signaling. Besides their role in autophagy and trafficking, we uncovered a previously unknown function of GABARAP proteins as membrane-localized signaling scaffolds.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读