例如:"lncRNA", "apoptosis", "WRKY"

Anatomy of an iron-sulfur cluster scaffold protein: Understanding the determinants of [2Fe-2S] cluster stability on IscU.

Biochim. Biophys. Acta. 2015 Jun;1853(6):1448-56. Epub 2014 Nov 01
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Protein-bound iron sulfur clusters are prosthetic groups involved in several metabolic pathways. Understanding how they interact with the host protein and which factors influence their stability is therefore an important goal in biology. Here, we have addressed this question by studying the determinants of the 2Fe-2S cluster stability in the IscU/Isu protein scaffold. Through a detailed computational study based on a mixed quantum and classical mechanics approach, we predict that the simultaneous presence of two conserved residues, D39 and H105, has a conflicting role in cluster coordination which results in destabilizing cluster-loaded IscU/Isu according to a 'tug-of-war' mechanism. The effect is absent in the D39A mutant already known to host the cluster more stably. Our theoretical conclusions are directly supported by experimental data, also obtained from the H105A mutant, which has properties intermediate between the wild-type and the D39A mutant. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读