[No authors listed]
Benzotriazole UV-stabilizers (BUVs) are applied in materials for protection against UV-irradiation. They are widely used, bioaccumulate and share structural similarities to benzotriazole. Benzotriazole (1HBT) finds application as corrosion inhibitor in dishwashing detergents, antifreeze (vehicles) and aircraft de-icing agent. BUVs and 1HBT are persistent and ubiquitous in the aquatic environment, but there is little understanding of the ecotoxicological implications. Here, we comparatively analyze the hormonal activity in vitro and effects in zebrafish eleuthero-embryos in vivo. 2-(2-Hydroxy-5-methylphenyl)benzotriazole (UV-P), 2-(3-t-butyl-2-hydroxy-5-methylphenyl)-5-chlorobenzotriazole (UV-326), UV-327, UV-328, UV-329 and UV-320 showed no estrogenicity (YES assay) and androgenicity (YAS assay). However, UV-P and 1HBT showed significant antiandrogenic activity. We assessed the transcription profiles of up to 26 genes associated with different toxicological pathways in zebrafish eleuthero-embryos to elucidate potential modes of action of UV-P, UV-326 and 1HBT. Embryos were experimentally exposed for 144hpf to three measured concentrations of 15.8, 70.8, and 690μg/L UV-P, 7.5, 31.7, and 84.3μg/L UV-326 and 7.9, 97.3 and 1197.3μg/L 1HBT. Among the 26 transcripts, the induction of the aryl hydrocarbon receptor (AHR) pathway by UV-P and UV-326 was the most significant finding. UV-P led to dose-related induction of AHR1, ARNT2 and cyp1a1, as well as of phase II enzymes glutathione-S-transferase (gstp1) and ugt1a. UV-326 led to a significant induction of cyp1a1 and AHR2, but down-regulation of gstp1 at 84μg/L. Only little transcriptional alterations occurred in genes related to apoptosis, oxidative stress, hormone receptors, and steroidogenesis including aromatase. 1HBT led to only a few expressional changes at 1197μg/L. Our data lead to the conclusion that UV-P and UV-326 activate the AHR-pathway, whereas 1HBT shows only little transcriptional alterations. It should be noted, however, that effects have been observed at concentration much higher than those occurring in the environment. Forthcoming studies should show whether the observed antiandrogenic activities and transcriptional changes translate into physiological effects .
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |