例如:"lncRNA", "apoptosis", "WRKY"

Activation of galanin receptor 2 stimulates large conductance Ca(2+)-dependent K(+) (BK) channels through the IP3 pathway in human embryonic kidney (HEK293) cells.

Biochem. Biophys. Res. Commun.2014 Mar 28;446(1):316-21. Epub 2014 Mar 03
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The large conductance Ca(2+)-activated K(+) (BK) channels are widely distributed in the brain, and act as intracellular calcium sensors in neurons. They play an important feedback role in controlling Ca(2+) flux and Ca(2+)-dependent processes, including neurotransmitter release and cellular excitability. In this study, the effects of the neuropeptide galanin on BK channels were examined by determining the whole-cell currents and single-channel activities in human embryonic kidney (HEK293) cells co-expressing GalR2 and the BK alpha subunit. Galanin enhanced the currents of BK channels, in a concentration-dependent and PTX-independent manner, with an ED50 value of 71.8±16.9 nM. This activation was mediated by GalR2, since its agonist AR-M1896 mimicked the effect of galanin, and since galanin did not facilitate BK currents in cells co-expressing cDNAs of BK and GalR1 or GalR3. The galanin-induced BK current persisted after replacement with Ca(2+)-free solution, suggesting that extracellular Ca(2+) is not essential. Chelating intracellular Ca(2+) by either the slow Ca(2+) buffer EGTA or the fast Ca(2+) buffer BAPTA abolished galanin-mediated activation of BK channels, indicating the important role of intracellular Ca(2+). The role of Ca(2+) efflux from the sarcoplasmic reticulum/endoplasmic reticulum (SR/ER) was confirmed by application of thapsigargin, an irreversible inhibitor that depletes Ca(2+) from SR/ER. Moreover, the inositol-1,4,5-triphosphate receptor (IP3R) was identified as the mediator responsible for increased intracellular Ca(2+) activating BK channels. Taken together, activation of GalR2 leads to elevation of intracellular Ca(2+) is due to Ca(2+) efflux from ER through IP3R sequentially opening BK channels.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读