例如:"lncRNA", "apoptosis", "WRKY"

Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes.

Nat. Struct. Mol. Biol.2014 Feb;21(2):126-32. Epub 2014 Jan 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The mammalian circadian clock is built on a molecular feedback loop in which the Period (PER) proteins, acting in a large, poorly understood complex, repress Clock-Bmal1, the transcription factor driving their expression. We found that mouse PER complexes include the histone methyltransferase HP1γ-Suv39h. PER proteins recruited HP1γ-Suv39h to the Per1 and Per2 promoters, and HP1γ-Suv39h proved important for circadian di- and trimethylation of histone H3 Lys9 (H3K9) at the Per1 promoter, feedback repression and clock function. HP1γ-Suv39h was recruited to the Per1 and Per2 promoters ~4 h after recruitment of HDAC1, a PER-associated protein previously implicated in clock function and H3K9 deacetylation at the Per1 promoter. PER complexes containing HDAC1 or HP1γ-Suv39h appeared to be physically separable. Circadian clock negative feedback by the PER complex thus involves dynamic, ordered recruitment of repressive chromatin modifiers to DNA-bound Clock-Bmal1.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读