[No authors listed]
The cyclooxygenase (COX) enzyme isoforms COX-1 and COX-2 catalyze the main step in the generation of prostanoids that mediate major physiological functions. Whereas COX-1 is a ubiquitously expressed stable protein, COX-2 is transiently upregulated in many pathologies and is often associated with a poor prognostic outcome. We have recently shown that an interaction of COX-2 with the prostaglandin EPâ receptor accelerates its degradation via a mechanism that augments its level of ubiquitination. Here we show that the sensitivity of both COX-1 and COX-2 to EPâ is altered upon modification of one lysine residue. A point mutation of lysine to-arginine in position 432 of COX-2 (K432R) yields an enzyme with decreased sensitivity to EPâ -mediated degradation. In contrast, insertion of a putative ubiquitination site into the corresponding position of COX-1 (H446K') yields an enzyme with higher levels of ubiquitination and reduced expression. Furthermore, compared to wild type COX-1, H446K' is significantly more sensitive to downregulation by EPâ . Together these data suggest that distinctive ubiquitination of COX-1 and COX-2 may be responsible for their different sensitivity to EPâ -mediated degradation.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |