例如:"lncRNA", "apoptosis", "WRKY"

Genome-wide association study on dimethylarginines reveals novel AGXT2 variants associated with heart rate variability but not with overall mortality.

Eur. Heart J.2014 Feb;35(8):524-31. Epub 2013 Oct 24
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


AIMS:The purpose of this study was to identify novel genetic variants influencing circulating asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) levels and to evaluate whether they have a prognostic value on cardiovascular mortality. METHODS AND RESULTS:We conducted a genome-wide association study on the methylarginine traits and investigated the predictive value of the new discovered variants on mortality. Our meta-analyses replicated the previously known locus for ADMA levels in DDAH1 (rs997251; P = 1.4 × 10(-40)), identified two non-synomyous polymorphisms for SDMA levels in AGXT2 (rs37369; P = 1.4 × 10(-40) and rs16899974; P = 1.5 × 10(-38)) and one in SLC25A45 (rs34400381; P = 2.5 × 10(-10)). We also fine-mapped the AGXT2 locus for further independent association signals. The two non-synonymous AGXT2 variants independently associated with SDMA levels were also significantly related with short-term heart rate variability (HRV) indices in young adults. The major allele (C) of the novel non-synonymous rs16899974 (V498L) variant associated with decreased SDMA levels and an increase in the ratio between the low- and high-frequency spectral components of HRV (P = 0.00047). Furthermore, the SDMA decreasing allele (G) of the non-synomyous SLC25A45 (R285C) variant was associated with a lower resting mean heart rate during the HRV measurements (P = 0.0046), but not with the HRV indices. None of the studied genome-wide significant variants had any major effect on cardiovascular or total mortality in patients referred for coronary angiography. CONCLUSIONS:AGXT2 has an important role in SDMA metabolism in humans. AGXT2 may additionally have an unanticipated role in the autonomic nervous system regulation of cardiac function.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读