例如:"lncRNA", "apoptosis", "WRKY"

Loss of β2-spectrin prevents cardiomyocyte differentiation and heart development.

Cardiovasc. Res.2014 Jan 1;101(1):39-47. Epub 2013 Sep 24
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


AIMS:β2-Spectrin is an actin-binding protein that plays an important role in membrane integrity and the transforming growth factor (TGF)-β signalling pathway as an adaptor for Smads. Loss of β2-spectrin in mice (Spnb2(-/-)) results in embryonic lethality with gastrointestinal, liver, neural, and heart abnormalities that are similar to those in Smad2(+/-)Smad3(+/-) mice. However, to date, the role of β2-spectrin in embryogenesis, particularly in heart development, has been poorly delineated. Here, we demonstrated that β2-spectrin is required for the survival and differentiation of cardiomyocytes, and its loss resulted in defects in heart development with failure of ventricular wall thickening. METHODS AND RESULTS:Disruption of β2-spectrin in primary muscle cells not only inhibited TGF-β/Smad signalling, but also reduced the expression of the cardiomyocyte differentiation markers Nkx2.5, dystrophin, and α-smooth muscle actin (α-SMA). Furthermore, cytoskeletal networks of dystrophin, F-actin, and α-SMA in cardiomyocytes were disorganized upon loss of β2-spectrin. In addition, deletion of β2-spectrin in mice (Spnb2(tm1a/tm1a)) prevented proper development of the heart in association with disintegration of dystrophin structure and markedly reduced survival. CONCLUSION:These data suggest that β2-spectrin deficiency leads to inactivation of TGF-β/Smad signalling and contributes to dysregulation of the cell cycle, proliferation, differentiation, and the cytoskeletal network, and it leads to defective heart development. Our data demonstrate that β2-spectrin is required for proper development of the heart and that disruption of β2-spectrin is a potential underlying cause of congenital heart defects.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读