例如:"lncRNA", "apoptosis", "WRKY"

A proline-rich loop mediates specific functions of human sialidase NEU4 in SK-N-BE neuronal differentiation.

Glycobiology. 2013 Dec;23(12):1499-509. Epub 2013 Sep 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Human sialidase NEU4 long (N4L) is a membrane-associated enzyme that has been shown to be localized in the outer mitochondrial membrane. A role in different cellular processes has been suggested for this enzyme, such as apoptosis, neuronal differentiation and tumorigenesis. However, the molecular bases for these roles, not found in any of the other highly similar human sialidases, are not understood. We have found that a proline-rich sequence of 81 amino acids, unique to NEU4 sequence, contains potential Akt and Erk1 kinase motifs. Molecular modeling, based on the experimentally determined three-dimensional structure of cytosolic human NEU2, showed that the proline-rich sequence is accommodated in a loop, thus preserving the typical beta-barrel structure of sialidases. In order to investigate the role of this loop in neuronal differentiation, we obtained SK-N-BE neuroblastoma cells stably overexpressing either human wild-type N4L or a deletion mutant lacking the proline-rich loop. Our results demonstrate that the proline-rich region can also enhance cell proliferation and retinoic acid (RA)-induced neuronal differentiation and it is also involved in NEU4 interaction with Akt, as well as in substrate recognition, modifying directly or through the interaction with other protein(s) the enzyme specificity toward sialylated glycoprotein(s). On the whole, our results suggest that N4L could be a downstream component of the PI3K/Akt signaling pathway required for RA-induced differentiation of neuroblastoma SK-N-BE cells.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读