例如:"lncRNA", "apoptosis", "WRKY"

Dietary resistant starch prevents urinary excretion of 25-hydroxycholecalciferol and vitamin D-binding protein in type 1 diabetic rats.

J. Nutr.2013 Jul;143(7):1123-8. Epub 2013 May 15
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Diabetes is a rapidly growing epidemic affecting millions of Americans and has been implicated in a number of devastating secondary complications. We previously demonstrated that type 2 diabetic rats exhibit vitamin D deficiency due to aberrant megalin-mediated endocytosis and excessive urinary excretion of 25-hydroxycholecalciferol (25D3) and vitamin D-binding protein (DBP). Here, we examined whether a model of type 1 diabetes [T1D; streptozotocin (STZ)-treated Sprague-Dawley rats] would similarly excrete abnormally high concentrations of 25D3 and DBP due to renal damage and compromised expression of megalin and its endocytic partner, disabled-2 (Dab2). Moreover, we tested whether feeding diabetic rats starch that is resistant to digestion could alleviate these abnormalities. Control (n = 12) rats were fed a standard, semipurified diet (AIN-93G) containing 55% total dietary starch and STZ-treated rats were fed the AIN-93G diet (n = 12) or a diet containing 55% high-amylose maize that is partially resistant to digestion [20% total dietary resistant starch (RS); n = 12] for 2 and 5 wk. The RS diet attenuated weight loss and polyuria in STZ-treated rats. Histology and immunohistochemistry revealed that dietary RS also attenuated the loss of Dab2 expression in renal proximal tubules. Moreover, urinary concentrations of both 25D3 and DBP were elevated ∼10-fold in STZ-treated rats (5 wk post STZ injection), which was virtually prevented by the RS. We also observed a ∼1.5-fold increase in megalin mRNA expression in STZ-treated rats, which was attenuated by feeding rats the RS diet for 2 wk. Taken together, these studies indicate that consumption of low-glycemic carbohydrates can attenuate disruption of vitamin D homeostasis in T1D through the rescue of megalin-mediated endocytosis in the kidney.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读