例如:"lncRNA", "apoptosis", "WRKY"

HECT-E3 ligase ETC-1 regulates securin and cyclin B1 cytoplasmic abundance to promote timely anaphase during meiosis in C. elegans.

Development. 2013 May;140(10):2149-59. Epub 2013 Apr 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The anaphase inhibitor securin plays a crucial role in regulating the timing of sister chromatid separation during mitosis. When sister chromatid pairs become bioriented, the E3 ligase anaphase promoting complex/cyclosome (APC/C) ubiquitylates securin for proteolysis, triggering sister chromatid separation. Securin is also implicated in regulating meiotic progression. Securin protein levels change sharply during cell cycle progression, enabling its timely action. To understand the mechanism underlying the tightly regulated dynamics of securin, we analyzed the subcellular localization of the securin IFY-1 during C. elegans development. IFY-1 was highly expressed in the cytoplasm of germ cells. The cytoplasmic level of IFY-1 declined immediately following meiosis I division and remained low during meiosis II and following mitoses. We identified a C. elegans homolog of another type of E3 ligase, UBE3C, designated ETC-1, as a regulator of the cytoplasmic IFY-1 level. depletion of ETC-1 stabilized IFY-1 and CYB-1 (cyclin B1) in post-meiosis I embryos. ETC-1 knockdown in a reduced APC function background caused an embryonic lethal phenotype. In vitro, ETC-1 ubiquitylates IFY-1 and CYB-1 in the presence of the E2 enzyme UBC-18, which functions in pharyngeal development. Genetic analysis revealed that UBC-18 plays a distinct role together with ETC-1 in regulating the cytoplasmic level of IFY-1 during meiosis. Our study reports a novel mechanism, mediated by ETC-1, that co-operates with APC/C to maintain the meiotic arrest required for proper cell cycle timing during reproduction.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读