例如:"lncRNA", "apoptosis", "WRKY"

Biochemical and functional characterization of human phospholipid scramblase 4 (hPLSCR4).

Biol. Chem.2012 Oct;393(10):1173-81
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Human phospholipid scramblase 4 (hPLSCR4), an isoform of the scramblase family, is a type II single-pass transmembrane protein whose function remains unknown. To understand its role, recombinant hPLSCR4 was obtained by cloning the ORF into a pET28 a(+) vector and overexpressed in Escherichia coli. Functional assay showed that Ca2+, Mg2+, and Zn2+ activate hPLSCR4 and mediate scrambling activity independent of the phospholipid head group. Far-UV-CD and fluorescence spectroscopy revealed that Ca2+ and Mg2+ binding induces conformation change in hPLSCR4, exposing hydrophobic patches of the protein, and Ca2+ has more affinity than Mg2+ and Zn2+. Stains-all studies further confirm that hPLSCR4 is a Ca2+-binding protein. Point mutation (Asp290→Ala) in hPLSCR4 decreased the Ca2+-binding affinity as well as Tb3+ luminescence, suggesting residues of the predicted Ca2+-binding motif are involved in Ca2+ binding. Functional reconstitution with (Asp290→Ala) mutant led to ~50% and ~40% decrease in scramblase activity in the presence of Ca2+ and Mg2+, respectively.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读