[No authors listed]
Both epigenetic and splicing regulation contribute to tumor progression, but the potential links between these two levels of gene-expression regulation in pathogenesis are not well understood. Here, we report that the mouse and human RNA helicases Ddx17 and Ddx5 contribute to tumor-cell invasiveness by regulating alternative splicing of several DNA- and chromatin-binding factors, including the macroH2A1 histone. We show that macroH2A1 splicing isoforms differentially regulate the transcription of a set of genes involved in redox metabolism. In particular, the SOD3 gene that encodes the extracellular superoxide dismutase and plays a part in cell migration is regulated in an opposite manner by macroH2A1 splicing isoforms. These findings reveal a new regulatory pathway in which splicing factors control the expression of histone variant isoforms that in turn drive a transcription program to switch tumor cells to an invasive phenotype.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |