例如:"lncRNA", "apoptosis", "WRKY"

Cyclooxygenase-2-derived prostacyclin regulates arterial thrombus formation by suppressing tissue factor in a sirtuin-1-dependent-manner.

Circulation. 2012 Sep 11;126(11):1373-84. Epub 2012 Aug 03
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Selective inhibitors of cyclooxygenase (COX)-2 increase the risk of myocardial infarction and thrombotic events, but the responsible mechanisms are not fully understood. METHODS AND RESULTS:We found that ferric chloride-induced arterial thrombus formation was significantly greater in COX-2 knockout compared with wild-type mice. Cross-transfusion experiments excluded the likelihood that COX-2 knockout platelets, despite enhanced aggregation responses to collagen and thrombin, are responsible for increased arterial thrombus formation in COX-2 knockout mice. Importantly, we observed that COX-2 deletion decreased prostacyclin synthase and production and peroxisome proliferator-activated receptor- and sirtuin-1 (SIRT1) expression, with consequent increased upregulation of tissue factor (TF), the primary initiator of blood coagulation. Treatment of wild-type mice with a prostacyclin receptor antagonist or a peroxisome proliferator-activated receptor-δ antagonist, which predisposes to arterial thrombosis, decreased SIRT1 expression and increased TF activity. Conversely, exogenous prostacyclin or peroxisome proliferator-activated receptor-δ agonist completely reversed the thrombotic phenotype in COX-2 knockout mice, restoring normal SIRT1 levels and reducing TF activity. Furthermore, inhibition of SIRT1 increased TF expression and activity and promoted generation of occlusive thrombi in wild-type mice, whereas SIRT1 activation was sufficient to decrease abnormal TF activity and prothrombotic status in COX-2 knockout mice. CONCLUSIONS:Modulation of SIRT1 and hence TF by prostacyclin/peroxisome proliferator-activated receptor-δ pathways not only represents a new mechanism in controlling arterial thrombus formation but also might be a useful target for therapeutic intervention in the atherothrombotic complications associated with COX-2 inhibitors.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读