例如:"lncRNA", "apoptosis", "WRKY"

A nuclear export sequence in GPN-loop GTPase 1, an essential protein for nuclear targeting of RNA polymerase II, is necessary and sufficient for nuclear export.

Biochim. Biophys. Acta. 2012 Oct;1823(10):1756-66. Epub 2012 Jul 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


XAB1/Gpn1 is a GTPase that associates with RNA polymerase II (RNAPII) in a GTP-dependent manner. Although XAB1/Gpn1 is essential for nuclear accumulation of RNAPII, the underlying mechanism is not known. A XAB1/Gpn1-EYFP fluorescent protein, like endogenous XAB1/Gpn1, localized to the cytoplasm but it rapidly accumulated in the cell nucleus in the presence of leptomycin B, a chemical inhibitor of the nuclear transport receptor Crm1. Crm1 recognizes short peptides in substrate proteins called nuclear export sequences (NES). Here, we employed site-directed mutagenesis and fluorescence microscopy to assess the functionality of all six putative NESs in XAB1/Gpn1. Mutating five of the six putative NESs did not alter the cytoplasmic localization of XAB1/Gpn1-EYFP. However, a V302A/L304A double mutant XAB1/Gpn1-EYFP protein was clearly accumulated in the cell nucleus, indicating the disruption of a functional NES. This functional XAB1/Gpn1 NES displays all features present in most common and potent NESs, including, in addition to Φ1-Φ4, a critical fifth hydrophobic amino acid Φ0. Therefore, in human Gpn1 this NES spans amino acids 292-LERLRKDMGSVAL-304. XAB1/Gpn1 NES is remarkably conserved during evolution. XAB1/Gpn1 NES was sufficient for nuclear export activity, as it caused a complete exclusion of EYFP from the cell nucleus. Molecular modeling of XAB1/Gpn1 provided a mechanistic reason for NES selection, as functionality correlated with accessibility, and it also suggested a mechanism for NES inhibition by intramolecular masking. In conclusion, we have identified a highly active, evolutionarily conserved NES in XAB1/Gpn1 that is critical for nucleo-cytoplasmic shuttling and steady-state cytoplasmic localization of XAB1/Gpn1.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读