例如:"lncRNA", "apoptosis", "WRKY"

N-linked glycosylation of proline-rich membrane anchor (PRiMA) is not required for assembly and trafficking of globular tetrameric acetylcholinesterase.

Neurosci. Lett.2012 Aug 8;523(1):71-5. Epub 2012 Jun 26
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Acetylcholinesterase (AChE) is organized into globular tetramers (G(4)) by a structural protein called proline-rich membrane anchor (PRiMA), anchoring it into the cell membrane of neurons in the brain. The assembly of AChE tetramers with PRiMA requires the presence of a C-terminal "t-peptide" in the AChE catalytic subunit (AChE(T)). The glycosylation of AChE(T) is known to be required for its proper assembly and trafficking; however, the role of PRiMA glycosylation in the oligomer assembly has not been revealed. PRiMA is a glycoprotein containing two putative N-linked glycosylation sites. By using site-directed mutagenesis, the asparagine-43 was identified to be the N-linked glycosylation site of PRiMA. Abolishing glycosylation on mouse PRiMA appeared not to affect its assembly with AChE(T), the enzymatic properties of AChE, and the membrane trafficking of PRiMA-linked AChE tetramers. This result is contrary to the reports that glycosylation is essential for conformation and trafficking of membrane glycoproteins.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读