[No authors listed]
Yeast cells induce the genes required for mating prior to the completion of mitosis. To ensure proper cell cycle progression prior to mating differentiation, a key cytoplasmic regulator of cell fusion, Fus2p, is sequestered in the nucleus by cyclin-dependent kinase (Cdk). In response to pheromone signaling, the mitogen-activated protein kinase Fus3p phosphorylates Ser 84 in Fus2p to drive nuclear export. We found that Fus3p becomes active and phosphorylates S84 as early as S phase, raising the question of how Cdk prevents inappropriate activation of Fus2p. Countering Fus3p, Cdk and a p21-activated kinase, Cla4p, maintain Fus2p's nuclear localization by phosphorylating Ser 67, which drives nuclear import and inhibits nuclear export. When Cdk and Cla4p activities drop after cell division, Fus3p promotes Fus2p export both via S84 phosphorylation and by down-regulating S67 phosphorylation. Thus, potential premature activation of Fus2p in mitosis is prevented by cell cycle-dependent phosphorylation that overrides the mating pheromone-induced phosphorylation that drives nuclear export.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |