例如:"lncRNA", "apoptosis", "WRKY"

HSP90 inhibition by 17-DMAG attenuates oxidative stress in experimental atherosclerosis.

Cardiovasc. Res.2012 Jul 1;95(1):116-23. Epub 2012 Apr 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


AIMS:Reactive oxygen species participate in atherogenesis through different mechanisms including oxidative stress and inflammation. Proteins implicated in both processes, such as mitogen-activated protein kinase kinase (MEK) and some NADPH oxidase (NOX) subunits, are heat shock protein-90 (HSP90) client proteins. In this work, we investigated the antioxidant properties of the HSP90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) in experimental atherosclerosis. METHODS AND RESULTS:Treatment of ApoE(-/-) mice with 17-DMAG (2 mg/kg every 2 days for 10 weeks) decreased levels and extracellular signal-regulated kinase (ERK) activation in aortic plaques compared with control animals. Accordingly, treatment of rat vascular smooth muscle cells (VSMCs) with 17-DMAG increased HSP27 and HSP70 and inhibited ERK activation. Interestingly, 17-DMAG diminished NADPH oxidase dependent duanyu1670 production in VSMCs and monocytes. In addition, a marked reduction in NADPH oxidase dependent duanyu1670 production was observed with HSP90siRNA and the opposite pattern with HSP70siRNA. 17-DMAG also diminished the expression of Nox1 and Nox organizer-1 (Noxo1) in VSMCs and monocytes. Interestingly, 17-DMAG was able to modulate monocyte to macrophage differentiation. Finally, higher expression of Nox1 and Noxo1 was found in the inflammatory region of human atherosclerotic plaques, colocalizing with VSMCs, macrophages, and cells. CONCLUSION:Our results suggest that HSP90 inhibitors interfere with oxidative stress and modulate experimental atherosclerosis development through reduction in pro-oxidative factors.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读