例如:"lncRNA", "apoptosis", "WRKY"

Cerebellar abnormalities in purine nucleoside phosphorylase deficient mice.

Neurobiol. Dis.2012 Aug;47(2):201-9. Epub 2012 Apr 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Inherited defects in purine nucleoside phosphorylase (PNP) cause severe T cell immunodeficiency and progressive neurological dysfunction, yet little is known about the effects of PNP deficiency on the brain. PNP-KO mice display metabolic and immune anomalies similar to those observed in patients. Our objectives were to characterize brain abnormalities in PNP-KO mice and determine whether restoring PNP activity prevents these abnormalities. We analyzed structural brain defects in PNP-KO mice by magnetic resonance imaging, while assessing motor deficits using the accelerating rotarod and stationary balance beam tests. We detected morphological abnormalities and apoptosis in the cerebellum of PNP-KO mice by hematoxylin and eosin, electron microscopy, TUNEL and activated caspase 3 staining. We treated PNP-KO mice with PNP fused to the HIV-TAT protein transduction domain (TAT-PNP) from birth or from 4 weeks of age. Magnetic resonance imaging revealed a smaller than normal cerebellum in PNP-KO mice. PNP-KO mice displayed motor abnormalities including rapid fall from the rotating rod and frequent slips from the balance beam. The cerebellum of PNP-KO mice contained reduced purkinje cells (PC), which were irregular in shape and had degenerated dendrites. PC from the cerebellum of PNP-KO mice, expanded ex vivo, demonstrated increased apoptosis, which could be corrected by supplementing cultures with TAT-PNP. TAT-PNP injections restored PNP activity in the cerebellum of PNP-KO mice. TAT-PNP from birth, but not treatment initiated at 4 weeks of age, prevented the cerebellar PC damage and motor deficits. We conclude that PNP deficiency cause cerebellar abnormalities, including PC damage and progressive motor deficits. TAT-PNP treatment from birth can prevent the neurological abnormalities in PNP-KO mice.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读