例如:"lncRNA", "apoptosis", "WRKY"

Ciliogenic RFX transcription factors regulate FGF1 gene promoter.

J. Cell. Biochem.2012 Jul;113(7):2511-22. doi:10.1002/jcb.24127
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Fibroblast growth factor 1 (FGF1) has been shown to regulate cell proliferation, cell division, and neurogenesis. Human FGF1 gene 1B promoter (-540 to +31)-driven green fluorescence (F1BGFP) was shown to recapitulate endogenous FGF1 gene expression. It can also be used to isolate neural stem/progenitor cells (NSPCs) and glioblastoma stem cells (GBM-SCs) from developing mouse brains and human glioblastoma tissues, respectively. However, the regulatory mechanisms of FGF-1B promoter and F1BGFP(+) cells are not clear. In this study, we present several lines of evidence to show the roles of ciliogenic RFX transcription factors in the regulation of FGF-1B gene promoter and F1BGFP(+) cells: (i) RFX1, RFX2, and RFX3 transcription factors could directly bind the 18-bp cis-element (-484 to -467), and contribute to the regulation of FGF1 promoter and neurosphere formation. (ii) We demonstrated RFX2/RFX3 complex could only be detected in the nuclear extract of FGF-1B positive cells, but not in FGF-1B negative cells. (iii) Protein kinase C inhibitors, staurosporine and rottlerin, could decrease the percentage of F1BGFP(+) cells and their neurosphere formation efficiency through reducing the RFX2/3 complex. (iv) RNA interference knockdown of RFX2 could significantly reduce the percentage of F1BGFP(+) cells and their neurosphere formation efficiency whereas overexpression of RFX2 resulted in the opposite effects. Taken together, this study suggests ciliogenic RFX transcription factors regulate FGF-1B promoter activity and the maintenance of F1BGFP(+) NSPCs and GBM-SCs.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读