[No authors listed]
Caspase-3, a key executor of neuronal apoptosis, is up-regulated and activated during apoptosis induced by activity deprivation in cerebellar granule neurons (CGNs). However, the transcriptional mechanism regulating caspase-3 during CGN apoptosis remains unknown. Here, we show that the caspase-3 gene is transactivated and its induction is preceded by c-Jun NH(2)-terminal kinase (JNK)/c-Jun:ATF2 pathway activation following activity deprivation in CGNs. We observed that caspase-3 induction is abolished by pharmacological inhibition of the JNK/c-Jun:ATF2 pathway. Destroying c-Jun:ATF2 heterodimers with dominant negative mutants of c-Jun and ATF2 or knockdown by small RNA interference reduced caspase-3 promoter activity and mRNA level. Furthermore, chromatin immunoprecipitation showed increased binding of c-Jun:ATF2 heterodimers to the caspase-3 promoter in response to activity deprivation in vivo. Site-directed mutagenesis of the caspase-3 promoter revealed that caspase-3 transcriptional activation depends primarily on an ATF site -233 to -225 nucleotides upstream of the start site. Taken together, these data demonstrate that caspase-3 is a target gene of c-Jun:ATF2 heterodimers during apoptosis induced by activity deprivation in CGNs.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |