例如:"lncRNA", "apoptosis", "WRKY"

Distribution and frequency of VKORC1 sequence variants conferring resistance to anticoagulants in Mus musculus.

Pest Manag. Sci.2012 Feb;68(2):254-9. doi:10.1002/ps.2254. Epub 2011 Sep 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Emerging resistance to anticoagulant rodenticides may significantly impair house mouse (Mus musculus L.) control. As in humans and rats, sequence variants in the gene vitamin K epoxide reductase complex subunit 1 (VKORC1) of house mice are strongly implicated in the responses of mice to anticoagulants. This study gives a first overview of the distribution and frequency of such potentially resistance-conferring sequence variants in house mice, based on tissue samples from 30 populations in Germany, Switzerland and the Azores. RESULTS:Except for one population from south Germany, sequence variants were found in individuals from all locations sampled (29 out of 30 sites surveyed), with less than 10% of the individuals matching the wild-type genotype. The most frequent and widespread amino acid substitutions were Leu128Ser, Tyr139Cys and a group of linked sequence changes (Arg12Trp/Ala26Ser/Ala48Thr/Arg61Leu). Where these substitutions occurred as the sole variant, the proportion of homozygous individuals was 72-83%. CONCLUSIONS:An evaluation of published data revealed that the three most frequently found sequence variants are associated with a substantial loss of rodenticide efficacy of first-generation anticoagulants (e.g. warfarin, coumatetralyl), as well as the second-generation compound bromadiolone and most probably also difenacoum. Knowledge of the distribution and frequency of resistance-conferring sequence variants will stimulate their further functional characterisation and facilitate the choice of effective active substances for house mouse control.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读