例如:"lncRNA", "apoptosis", "WRKY"

Complexin activates and clamps SNAREpins by a common mechanism involving an intermediate energetic state.

Nat. Struct. Mol. Biol.2011 Jul 24;18(8):941-6
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The core mechanism of intracellular vesicle fusion consists of SNAREpin zippering between vesicular and target membranes. Recent studies indicate that the same SNARE-binding protein, complexin (CPX), can act either as a facilitator or as an inhibitor of membrane fusion, constituting a controversial dilemma. Here we take energetic measurements with the surface force apparatus that reveal that CPX acts sequentially on assembling SNAREpins, first facilitating zippering by nearly doubling the distance at which v- and t-SNAREs can engage and then clamping them into a half-zippered fusion-incompetent state. Specifically, we find that the central helix of CPX allows SNAREs to form this intermediate energetic state at 9-15 nm but not when the bilayers are closer than 9 nm. Stabilizing the activated-clamped state at separations of less than 9 nm requires the accessory helix of CPX, which prevents membrane-proximal assembly of SNAREpins.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读