例如:"lncRNA", "apoptosis", "WRKY"

Altered melusin pathways involved in cardiac remodeling following acute myocardial infarction.

Cardiovasc. Pathol.2012 Mar-Apr ;21(2):105-11. Epub 2011 May 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Melusin, a muscle-specific integrin-linked protein, has been reported to be a biomechanical sensor and to protect the heart from pressure overload. In the present study, we investigated the possible role that melusin plays during cardiac remodeling after myocardial infarction (MI). METHODS:We constructed a heart failure model of rats induced by left anterior descending coronary artery ligation. At different time points (1, 2, 3, 4, 6, and 8 weeks) following the operation, cardiac function was monitored by echocardiography and hemodynamic assessment; cardiac morphology was measured using hematoxylin-eosin-stained sections. Melusin expression, as well as p-Akt, Akt, and one of the Rho small GTPase family members, CDC42, was determined dynamically by Western blotting analysis during the postinfarction cardiac remodeling. RESULTS:Progressive increase in left ventricular (LV) end-systolic dimension and LV end-diastolic dimension and decrease in percent LV fractional shortening (%FS) and LVdp/dt(max) demonstrated gradually deteriorated cardiac function in rats following MI operation. Morphological analysis revealed cardiac remodeling in MI animals, including increased LV diameter and decreased border zone thickness. We also showed a dynamic change in melusin during heart failure progression; it had an initial decline which was evident at 3 weeks and increased subsequently, reaching peak levels at 6 weeks. This dynamic change in melusin was significantly correlated with %FS and LVdp/dt(max.) p-Akt/Akt and CDC42 protein expression was correlated with melusin content. CONCLUSIONS:The altered melusin pathways and CDC42 parallel the cardiac function progression during cardiac remodeling post-MI. The dynamic change of them during this procedure may represent an important molecular mechanism underlying postinfarction cardiac remodeling and provide potential therapeutic targets.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读