例如:"lncRNA", "apoptosis", "WRKY"

The bioactivity of human bone morphogenetic protein-15 is sensitive to C-terminal modification: characterization of the purified untagged processed mature region.

Mol. Cell. Endocrinol.2011 Jan 30;332(1-2):106-15. Epub 2010 Oct 16
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Oocyte-derived bone morphogenetic protein-15 (BMP15) is critical for the regulation of mammalian fertility. Previously we have found that a C-terminal His(6)-tag destroys the bioactivity of growth differentiation-9 (GDF9, a homolog of BMP15). In this study we found that recombinant human BMP15 is produced by HEK-293T cells in an active form, but the bioactivity is lost by C-terminal modification, specifically, fusion to a Flag tag. After purification the mature BMP15 wt is active in transcriptional reporter assays specific for Smad1/5/8 in human granulosa-luteal (hGL) and COV434 granulosa tumor cells, whereas BMP15 with a carboxy-terminal Flag tag remains inactive. Using these same cell models we found that treatment with purified mature BMP15 wt causes a rapid phosphorylation of Smad1. The purified BMP15 wt is a potent stimulator of rat granulosa cell DNA synthesis, which could be antagonized by the BMPRII ectodomain-Fc fusion molecule, whereas the BMP15C-Flag was completely inactive. Further, the BMP15 wt form is a potent stimulator of inhibin B production in hGL cells. We found that the purified BMP15 wt consists of P16 and -17, both of which are post-translationally modified forms. This is the first characterization of a purified untagged human BMP15 mature region, which is stable and highly bioactive in human and rodent granulosa cells and as such is of importance for studies on human fertility.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读