例如:"lncRNA", "apoptosis", "WRKY"

SHP2 mediates gp130-dependent cardiomyocyte hypertrophy via negative regulation of skeletal alpha-actin gene.

J. Mol. Cell. Cardiol.2010 Aug;49(2):157-64. Epub 2010 Mar 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Morphological and biochemical phenotypes of cardiomyocyte hypertrophy are determined by neurohumoral factors. Stimulation of G protein-coupled receptor (GPCR) results in uniform cell enlargement in all directions with an increase in skeletal alpha-actin (alpha-SKA) gene expression, while stimulation of gp130 receptor by interleukin-6 (IL-6)-related cytokines induces longitudinal elongation with no increase in alpha-SKA gene expression. Thus, alpha-SKA is a discriminating marker for hypertrophic phenotypes; however, regulatory mechanisms of alpha-SKA gene expression remain unknown. Here, we clarified the role of SH2-containing protein tyrosine phosphatase 2 (SHP2) in alpha-SKA gene expression. In neonatal rat cardiomyocytes, endothelin-1 (ET-1), a GPCR agonist, but not leukemia inhibitory factor (LIF), an IL-6-related cytokine, induced RhoA activation and promotes alpha-SKA gene expression via RhoA. In contrast, LIF, but not ET-1, induced activation of SHP2 in cardiomyocytes, suggesting that SHP2 might negatively regulate alpha-SKA gene expression downstream of gp130. Therefore, we examined the effect of adenovirus-mediated overexpression of wild-type SHP2 (SHP2(WT)), dominant-negative SHP2 (SHP2(C/S)), or beta-galactosidase (beta-gal), on alpha-SKA gene expression. LIF did not upregulate alpha-SKA mRNA in cardiomyocytes overexpressing either beta-gal or SHP2(WT). In cardiomyocytes overexpressing SHP2(C/S), LIF induced upregulation of alpha-SKA mRNA, which was abrogated by concomitant overexpression of either C3-toxin or dominant-negative RhoA. RhoA was activated after LIF stimulation in the cardiomyocytes overexpressing SHP2(C/S), but not in myocytes overexpressing beta-gal. Furthermore, SHP2 mediates LIF-induced longitudinal elongation of cardiomyocytes via ERK5 activation. Collectively, these findings indicate that SHP2 negatively regulates alpha-SKA expression via RhoA inactivation and suggest that SHP2 implicates ERK5 in cardiomyocyte elongation downstream of gp130.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读