[No authors listed]
Morphological and biochemical phenotypes of cardiomyocyte hypertrophy are determined by neurohumoral factors. Stimulation of G protein-coupled receptor (GPCR) results in uniform cell enlargement in all directions with an increase in skeletal alpha-actin (alpha-SKA) gene expression, while stimulation of gp130 receptor by interleukin-6 (IL-6)-related cytokines induces longitudinal elongation with no increase in alpha-SKA gene expression. Thus, alpha-SKA is a discriminating marker for hypertrophic phenotypes; however, regulatory mechanisms of alpha-SKA gene expression remain unknown. Here, we clarified the role of SH2-containing protein tyrosine phosphatase 2 (SHP2) in alpha-SKA gene expression. In neonatal rat cardiomyocytes, endothelin-1 (ET-1), a GPCR agonist, but not leukemia inhibitory factor (LIF), an IL-6-related cytokine, induced RhoA activation and promotes alpha-SKA gene expression via RhoA. In contrast, LIF, but not ET-1, induced activation of SHP2 in cardiomyocytes, suggesting that SHP2 might negatively regulate alpha-SKA gene expression downstream of gp130. Therefore, we examined the effect of adenovirus-mediated overexpression of wild-type SHP2 (SHP2(WT)), dominant-negative SHP2 (SHP2(C/S)), or beta-galactosidase (beta-gal), on alpha-SKA gene expression. LIF did not upregulate alpha-SKA mRNA in cardiomyocytes overexpressing either beta-gal or SHP2(WT). In cardiomyocytes overexpressing SHP2(C/S), LIF induced upregulation of alpha-SKA mRNA, which was abrogated by concomitant overexpression of either C3-toxin or dominant-negative RhoA. RhoA was activated after LIF stimulation in the cardiomyocytes overexpressing SHP2(C/S), but not in myocytes overexpressing beta-gal. Furthermore, SHP2 mediates LIF-induced longitudinal elongation of cardiomyocytes via ERK5 activation. Collectively, these findings indicate that SHP2 negatively regulates alpha-SKA expression via RhoA inactivation and suggest that SHP2 implicates ERK5 in cardiomyocyte elongation downstream of gp130.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |