例如:"lncRNA", "apoptosis", "WRKY"

Peptide inhibitors identify roles for SSB C-terminal residues in SSB/exonuclease I complex formation.

Biochemistry. 2009 Jul 28;48(29):6764-71. doi:10.1021/bi900361r
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Bacterial single-stranded (ss) DNA-binding proteins (SSBs) facilitate DNA replication, recombination, and repair processes in part by recruiting diverse genome maintenance enzymes to ssDNA. This function utilizes the C-terminus of SSB (SSB-Ct) as a common binding site for SSB's protein partners. The SSB-Ct is a highly conserved, amphipathic sequence comprising acidic and hydrophobic elements. A crystal structure of Escherichia coli exonuclease I (ExoI) bound to a peptide comprising the E. coli SSB-Ct sequence shows that the C-terminal-most SSB-Ct Phe anchors the peptide to a binding pocket on ExoI and implicates electrostatic binding roles for the acidic SSB-Ct residues. Here, we use SSB-Ct peptide variants in competition experiments to examine the roles of individual SSB-Ct residues in binding ExoI in solution. Altering the C-terminal-most Pro or Phe residues in the SSB-Ct strongly impairs SSB-Ct binding to ExoI, confirming a major role for the hydrophobic SSB-Ct residues in binding ExoI. Alteration of N-terminal SSB-Ct residues leads to changes that reflect cumulative electrostatic binding roles for the Asp residues in SSB-Ct. The SSB-Ct peptides also abrogate SSB stimulation of ExoI activity through a competitive inhibition mechanism, indicating that the peptides can disrupt ExoI/SSB/ssDNA ternary complexes. Differences in the potency of the SSB-Ct peptide variants in the binding and nuclease inhibition studies indicate that the acidic SSB-Ct residues play a more prominent role in the context of the ternary complex than in the minimal ExoI/SSB-Ct interaction. Together, these data identify roles for residues in the SSB-Ct that are important for SSB complex formation with its protein partners.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读