例如:"lncRNA", "apoptosis", "WRKY"

Genetic interaction between the m-AAA protease isoenzymes reveals novel roles in cerebellar degeneration.

Hum. Mol. Genet.2009 Jun 1;18(11):2001-13. Epub 2009 Mar 16
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The mitochondrial m-AAA protease has a crucial role in axonal development and maintenance. Human mitochondria possess two m-AAA protease isoenzymes: a hetero-oligomeric complex, composed of paraplegin and AFG3L2 (Afg3 like 2), and a homo-oligomeric AFG3L2 complex. Loss of function of paraplegin (encoded by the SPG7 gene) causes hereditary spastic paraplegia, a disease characterized by retrograde degeneration of cortical motor axons. Spg7(-/-) mice show a late-onset degeneration of long spinal and peripheral axons with accumulation of abnormal mitochondria. In contrast, Afg3l2(Emv66/Emv66) mutant mice, lacking the AFG3L2 protein, are affected by a severe neuromuscular phenotype, due to defects in motor axon development. The role of the homo-oligomeric m-AAA protease and the extent of cooperation and redundancy between the two isoenzymes in adult neurons are still unclear. Here we report an early-onset severe neurological phenotype in Spg7(-/-) Afg3l2(Emv66/+) mice, characterized by loss of balance, tremor and ataxia. Spg7(-/-) Afg3l2(Emv66/+) mice display acceleration and worsening of the axonopathy observed in paraplegin-deficient mice. In addition, they show prominent cerebellar degeneration with loss of Purkinje cells and parallel fibers, and reactive astrogliosis. Mitochondria from affected tissues are prone to lose mt-DNA and have unstable respiratory complexes. At late stages, neurons contain structural abnormal mitochondria defective in COX-SDH reaction. Our data demonstrate genetic interaction between the m-AAA isoenzymes and suggest that different neuronal populations have variable thresholds of susceptibility to reduced levels of the m-AAA protease. Moreover, they implicate impaired mitochondrial proteolysis as a novel pathway in cerebellar degeneration.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读